Infografika o nevarnostih elektromagnetnih sevanjih

Raziskave

orientacija (5 od skupno 1243 raziskav)
"Current evidence indicates that exposure at levels that are found in the environment (in urban areas and near base stations) may particularly alter the receptor organs to orient in the magnetic field of the earth. These results could have important implications for migratory birds and insects, especially in urban areas, but could also apply to birds and insects in natural and protected areas where there are powerful base station emitters of radiofrequencies. Therefore, more research on the effects of electromagnetic radiation in nature is needed to investigate this emerging threat."
"In order to be efficient and effective, we designed and validated a fast and easy test on ants - these insects being used as a biological model - for revealing the effect of wireless equipments like mobile phones, smartphones, digital enhanced cordless telephone (DECT) phones, WiFi routers and so on. This test includes quantification of ants' locomotion under natural conditions, then in the vicinity of such wireless equipments. Observations, numerical results and statistical results allow detecting any effect of a radiating source on these living organisms."
"We used the ant species Myrmica sabuleti as a model to study the impact of electromagnetic waves on social insects' response to their pheromones and their food collection. We quantified M. sabuleti workers' response to their trail, area marking and alarm pheromone under normal conditions. Then, we quantified the same responses while under the influence of electromagnetic waves. Under such an influence, ants followed trails for only short distances, no longer arrived at marked areas and no longer orientated themselves to a source of alarm pheromone. Also when exposed to electromagnetic waves, ants became unable to return to their nest and recruit congeners; therefore, the number of ants collecting food increases only slightly and slowly. After 180 h of exposure, their colonies deteriorated. Electromagnetic radiation obviously affects social insects' behavior and physiology."
"These results show, for the first time, that the neuromodulation induced by exposure to low-intensity low-frequency magnetic fields can be observed in humans using functional brain imaging and that the detection mechanism for these effects may be different from those used by animals for orientation and navigation. Magnetoreception may be more common than presently thought."
Effects of static magnetic fields at the cellular level
Miyakoshi J, Prog Biophys Mol Biol, februar 2005
"This method has been used to confirm that a static magnetic field alone has no such effect. However, the frequency of micronucleus formation increases significantly when certain treatments (e.g., X-irradiation) are given prior to exposure to a 10 T static magnetic field. It has also been reported that treatment with trace amounts of ferrous ions in the cell culture medium and exposure to a static magnetic field increases DNA damage, which is detected using the comet assay. In addition, many studies have found a strong magnetic field that can induce orientation phenomena in cell culture."

Podprite naš projekt

Projekt Ni nam vseeno je naše darilo vam. Ustvarjamo ga s srcem, v želji, da najdete koristne informacije, ki bi vam lahko pomagale, da (p)ostanete zdravi. Vsak doniran znesek bo porabljen za dober namen.
Doniraj

Zaupajte nam svojo zgodbo!

Vam elektrosmog povzroča težave? Ste prepoznali povezavo med sevanji in vašimi motnjami spanca, glavoboli, utrujenostjo? Pišite nam o svojih izkušnjah na info@ninamvseeno.org!

Vsa vsebina na spletni strani (razen slik) je pod licenco Creative Commons (CC BY 4.0). Prosto kopirajte, prilagajajte in razširjajte naprej.