Infografika o nevarnostih elektromagnetnih sevanjih

Raziskave

spomin (63 od skupno 1243 raziskav)
"High exposure to RF-EMF produced by MPBSTs was associated with delayed fine and gross motor skills, spatial working memory, and attention in school adolescents compared to students who were exposed to low RF-EMF."
"Our results showed that MW radiation exposure decreased the learning and memory performance that was associated with decrement of long-term potentiation induction and excitability of CA1 neurons. However, MW radiation did not have any effects on short-term plasticity and paired-pulse ratio as a good indirect index for measurement of glutamate release probability. The evaluation of hippocampal morphology indicated that the neuronal density in the hippocampal CA1 area was significantly decreased by MW."
"Exposure to EMR induced significant changes in amino acid neurotransmitters in the studied brain areas of juvenile and young adult rats, being more prominent in juvenile animals. It could be concluded that the alterations in amino acid neurotransmitters induced by EMR exposure of juvenile and young adult rats may underlie many of the neurological effects reported after EMR exposure including cognitive and memory impairment and sleep disorders. Some of these effects may persist for some time after stopping exposure."
"The study clearly indicates that exposure of rats to microwave radiation of 2.45GHz leads to detrimental changes in brain leading to lowering of learning and memory and expression of anxiety behavior in rats along with fall in brain antioxidant enzyme systems."
"We observed that 2.45 GHz MW irradiated mice showed slow learning and significantly increased number of working and reference memory errors in radial maze task. Further, 2.45 GHz MW radiation exposure increases serum corticosterone level and the expression of CRH, CRH-R1, and i-NOS, while the expression of iGluRs, n-NOS, PSD-95, protein kinase Cε, protein kinase A, ERK-p-ERK, CREB, and p-CREB decreases in above mentioned hippocampal subregions in a duration dependent manner. Our findings led us to conclude that 2.45 GHz MW radiation exposure induced local stress suppresses signaling mechanism(s) of hippocampal memory formation."
"Results from the present study concludes that the brain of 2 weeks aged mice was very sensitive to microwave exposure as observed immediately after exposure and during follow-up study at 6 weeks of age."
Base Transceiver Station Antennae Exposure and Human Health
Shahbazi-Gahrouei D, Int J Prev Med, oktober 2017
"The results showed that most of the symptoms such as nausea, headache, dizziness, irritability, discomfort, nervousness, depression, sleep disturbance, memory loss, and lowering of libido were statistically significant in the inhabitants living near the BTS antenna (<300 m distances) compared to those living far from the BTS antenna (>300 m).[6] Results also showed that the mobile phone BTS antenna may have health effects on inhabitants living near the station (5300 m distances)."
"Two U.S. government reports from the 1970s to 1980s provide evidence for many neuropsychiatric effects of non-thermal microwave EMFs, based on occupational exposure studies. 18 more recent epidemiological studies, provide substantial evidence that microwave EMFs from cell/mobile phone base stations, excessive cell/mobile phone usage and from wireless smart meters can each produce similar patterns of neuropsychiatric effects, with several of these studies showing clear dose–response relationships. Lesser evidence from 6 additional studies suggests that short wave, radio station, occupational and digital TV antenna exposures may produce similar neuropsychiatric effects. Among the more commonly reported changes are sleep disturbance/insomnia, headache, depression/depressive symptoms, fatigue/tiredness, dysesthesia, concentration/attention dysfunction, memory changes, dizziness, irritability, loss of appetite/body weight, restlessness/anxiety, nausea, skin burning/tingling/dermographism and EEG changes. In summary, then, the mechanism of action of microwave EMFs, the role of the VGCCs in the brain, the impact of non-thermal EMFs on the brain, extensive epidemiological studies performed over the past 50 years, and five criteria testing for causality, all collectively show that various non-thermal microwave EMF exposures produce diverse neuropsychiatric effects."
"We observed that, short-term as well as long-term 2.45 GHz MW radiation exposure increases the oxidative/nitrosative stress leading to enhanced apoptosis in hippocampal subfield neuronal and nonneuronal cells. Present findings also suggest that learning and spatial memory deficit which increases with the increased duration of MW exposure (15 < 30 < 60 days) is correlated with a decrease in hippocampal subfield neuronal arborization and dendritic spines."
"It seems necessary to give an International Classification of Diseases to EHS to get it accepted as EMF-related health problems. The increasing exposure to RF-EMF in schools is of great concern and needs better attention. Longer-term health effects are unknown. Parents, teachers, and school boards have the responsibility to protect children from unnecessary exposure."
Experimental model for ELF-EMF exposure: Concern for human health
D'Angelo C et al, Saudi J Biol Sci, januar 2015
"Since, varying the parameters of EMFs different effects may be observed, we have studied MCP-1 expression in HaCaT, SH-SY5Y, THP-1 and K562 exposed to a sinusoidal EMF at 50 Hz frequency with a flux density of 1 mT (rms). Our preliminary results showed that EMF-exposure differently modifies the expression of MCP-1 in different cell types. Thus, the MCP-1 expression needs to be better determined, with additional studies, with different parameters and times of exposure to ELF-EMF."
"Clearly, much more work needs to be done to understand the basic mechanisms responsible for this syndrome. However, this report adds to the developing evidence that EHS is a real disease, that a significant number of people suffer from EHS, and that—beyond taking steps to reduce EMF exposure—we have very limited knowledge of how to prevent and treat the disease."
Is magnetite a universal memory molecule?
Stormer FC et al, Med Hypotheses, september 2014
"In humans magnetite is found in the brain, heart, liver and spleen. Humans suffer from memory dysfunctions in many cases when iron is out of balance. Anomalous concentrations of magnetite is known to be associated with a neurodegenerative disorder like Alzheimer's disease. Due to the rapid speed and accuracy of our brain, memory and its functions must be governed by quantum mechanics."
"The results showed that most of the symptoms such as nausea, headache, dizziness, irritability, discomfort, nervousness, depression, sleep disturbance, memory loss and lowering of libido were statistically significant in the inhabitants living near the BTS antenna (<300 m distances) compared to those living far from the BTS antenna (>300 m)."
"These results indicate that the dynamic and brain-region specific changes in ionotropic glutamate receptor expression induced by ELF-MF are insufficient to influence the rat spatial learning ability."
An Update on Neurological Effects of Nonionizing Electromagnetic Fields
Lai H, 2012 BioInitiative Working Groups, marec 2014
"Neurological effects are caused by changes in the nervous system. Factors that act directly or indirectly on the nervous system causing morphological, chemical, or electrical changes in the nervous system can lead to neurological effects. The final manifestation of these effects can be seen in psychological changes, e.g., memory, learning and perception. The nervous system is an electrical organ. Thus, it should not be surprising that exposure to electromagnetic fields could lead to neurological changes. Morphological, chemical, electrical, and behavioral changes have been reported in animals and cells after exposure to nonionizing electromagnetic fields (EMF) across a range of frequencies."
"NSe could improve cognitive impairments of mice exposed to RF, the mechanism of which might involve the increasing antioxidation, decreasing free radical content and the changes of cerebra neurotransmitters."
"This study suggested that impairment of LTP induction and the damages of hippocampal structure, especially changes of synapses, might contribute to cognitive impairment after microwave exposure."
"RESULTS: The exposure to EMR resulted in significant changes in DA, NE and 5-HT in the four selected areas of adult rat brain. CONCLUSIONS: The exposure of adult rats to EMR may cause disturbances in monoamine neurotransmitters and this may underlie many of the adverse effects reported after EMR including memory, learning, and stress."
"We exposed Wistar rats to 2.45 GHz pulsed MW irradiation at a power density of 1 mW/cm(2) for 3 h/day, for up to 30 days. MW exposure induced spatial learning and memory impairments in rats. Hippocampal glucose uptake was also reduced by MW exposure in the absence or presence of insulin, but the levels of blood glucose and insulin were not affected. However, these spatial memory deficits were reversed by systemic glucose treatment. Our results indicate that glucose administration attenuates the spatial memory deficits induced by chronic low-power-density MW exposure, and reduced hippocampal glucose uptake may be associated with cognitive impairment caused by MW exposure."
"Reported major complaints were "fatigue/tiredness" (85%), "headache", "concentration, memory, and thinking" difficulty (81%, respectively). Seventy-two per cent used some form of complementary/alternative therapy. The most plausible trigger of EHS onset was a mobile phone base station or personal handy-phone system (37%). Sixty-five percent experienced health problems to be due to the radiation from other passengers' mobile phones in trains or buses, and 12% reported that they could not use public transportation at all. Fifty-three percent had a job before the onset, but most had lost their work and/or experienced a decrease in income. Moreover, 85.3% had to take measures to protect themselves from EMF, such as moving to low EMF areas, or buying low EMF electric appliances. EHS persons were suffering not only from their symptoms, but also from economical and social problems."
Subjective complaints of people living near mobile phone base stations in Poland
Bortkiewicz A et al, Int J Occup Med Environ Health, marec 2012
"The explanation why we did not find any correlation between the electric field strength and frequency of subjective symptoms but found a correlation between subjective symptoms and distance from base station needs further studies. Maybe new metrics of exposure assessment should be adopted for this purpose."
"Mice exposed in-utero were hyperactive and had impaired memory as determined using the object recognition, light/dark box and step-down assays. Whole cell patch clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) revealed that these behavioral changes were due to altered neuronal developmental programming. Exposed mice had dose-responsive impaired glutamatergic synaptic transmission onto layer V pyramidal neurons of the prefrontal cortex. We present the first experimental evidence of neuropathology due to in-utero cellular telephone radiation. Further experiments are needed in humans or non-human primates to determine the risk of exposure during pregnancy."
"Significant (p < 0.05) decreases were determined among groups in memory function and results showed that exposure to an 8 mT, 50 Hz EMF for 4 h has devastating effects on memory consolidation in male and female mice."
"Such ants having acquired a weaker olfactory or visual score and still undergoing olfactory or visual training were again submitted to electromagnetic waves. Not only did they lose all that they had memorized, but also they lost it in a few hours instead of in a few days (as under normal conditions when no longer trained). They kept no visual memory at all (instead of keeping 10% of it as they normally do). The impact of GSM 900 MHz radiation was greater on the visual memory than on the olfactory one. These communication waves may have such a disastrous impact on a wide range of insects using olfactory and/or visual memory, i.e., on bees."
"The observed protein expression changes may be related to brain plasticity alterations, indicative of oxidative stress in the nervous system or involved in apoptosis and might potentially explain human health hazards reported so far, such as headaches, sleep disturbance, fatigue, memory deficits, and brain tumor long-term induction under similar exposure conditions."
"Contrary to our previous studies, in this work external antennas located far away from the subjects were connected to the cellular phones. This setup prevents any emission of RFR from the internal antenna, thus drastically reducing RFR exposure. Despite that, the results remain similar to those obtained in our previous work. These results indicate that some of the effects previously attributed to RFR can be the result of some confounders."
"This study submits the results of a four-year monitoring of a complex diagnostics of the psychophysiological indicators for 196 children aged 7 to 12 years old: 147 of them are child users of mobile communication (test group) and 49 are in the control group. We have identified the following major trends of the psychophysiological indicators for child users of mobile communication: an increased number of phonemic perception disorders, abatement of efficiency, reduced indicators for the arbitrary and semantic memory, an increased fatigue. A steady decline of the parameters from high values to bottom standards has been found."
"Independent of the above effect, within the response inhibition condition there was also a significant gender X radiation interaction effect manifested at 15 leads by decreased P300 amplitudes of males in comparison to female subjects only at the presence of EMF. In conclusion, the present findings suggest that Wi-Fi exposure may exert gender-related alterations on neural activity associated with the amount of attentional resources engaged during a linguistic test adjusted to induce WM."
Use of mobile phones and changes in cognitive function in adolescents
Thomas S et al, Occup Environ Med, december 2010
"RESULTS: 236 students participated in both examinations. The proportion of mobile phone owners and the number of voice calls and short message services (SMS) per week increased from baseline to follow-up. Participants with more voice calls and SMS at baseline showed less reductions in response times over the 1-year period in various computerised tasks. Furthermore, those with increased voice calls and SMS exposure over the 1-year period showed changes in response time in a simple reaction and a working memory task. No associations were seen between mobile phone exposure and the Stroop test. CONCLUSIONS: We have observed that some changes in cognitive function, particularly in response time rather than accuracy, occurred with a latency period of 1 year and that some changes were associated with increased exposure. However, the increased exposure was mainly applied to those who had fewer voice calls and SMS at baseline, suggesting that these changes over time may relate to statistical regression to the mean, and not be the effect of mobile phone exposure."
"Decrease in CB immunoreactivity (IR) was noted in exposed (E1.6) group with loss of interneurons and pyramidal cells in CA1 area and loss of granule cells. Also, an overall increase in GFAP IR was observed in the hippocampus of E1.6. By TUNEL assay, apoptotic cells were detected in the CA1, CA3 areas and dentate gyrus of hippocampus, which reflects that chronic RF exposure may affect the cell viability. In addition, the increase of GFAP IR due to RF exposure could be well suited with the feature of reactive astrocytosis, which is an abnormal increase in the number of astrocytes due to the loss of nearby neurons. Chronic RF exposure to the rat brain suggested that the decrease of CB IR accompanying apoptosis and increase of GFAP IR might be morphological parameters in the hippocampus damages."
Whole body exposure with GSM 900MHz affects spatial memory in mice
Fragopoulou AF et al, Pathophysiology, junij 2010
"Statistical analysis revealed that during learning, exposed animals showed a deficit in transferring the acquired spatial information across training days (increased escape latency and distance swam, compared to the sham-exposed animals, on the first trial of training days 2-4). Moreover, during the memory probe-trial sham-exposed animals showed the expected preference for the target quadrant, while the exposed animals showed no preference, indicating that the exposed mice had deficits in consolidation and/or retrieval of the learned spatial information. Our results provide a basis for more thorough investigations considering reports on non-thermal effects of electromagnetic fields (EMFs)."
"RESULTS: Passive avoidance behaviour was significantly affected in mobile phone RF-EMR-exposed rats demonstrated as shorter entrance latency to the dark compartment when compared to the control rats. Marked morphological changes were also observed in the CA(3) region of the hippocampus of the mobile phone-exposed rats in comparison to the control rats. CONCLUSION: Mobile phone RF-EMR exposure significantly altered the passive avoidance behaviour and hippocampal morphology in rats."
"This is the first study that documents immediate and dramatic changes in both Heart Rate (HR) and HR variability (HRV) associated with MW exposure at levels well below (0.5%) federal guidelines in Canada and the United States (1000 microW/cm2)."
Wi-Fi electromagnetic fields exert gender related alterations on EEG
Maganioti A et al, 6th International Workshop on BiologicalEffects of ElectromagneticFields, januar 2010
"The present data support the idea that Wi-Fi signal may influence normal physiology through changes in gender related cortical excitability, as reflected by alpha and beta EEG frequencies."
"These results confirmed the existence of an effect of exposure on RT, as well as the fact that exposure duration (together with the responding hand and the side of exposure) may play an important role in producing detectable RFR effects on performance. Differences in these parameters might be the reason for the failure of certain studies to detect or replicate RFR effects."
Mobile phone exposure and spatial memory
Wiholm C et al, Bioelectromagnetics, september 2008
"The participants were daily mobile phone users, with and without symptoms attributed to regular mobile phone use. Results revealed a main effect of RF exposure and a significant RF exposure by group effect on distance traveled during the trials. The symptomatic group improved their performance during RF exposure while there was no such effect in the non-symptomatic group. Until this new finding is further investigated, we can only speculate about the cause."
"Our results show that MW-exposed rats had significant deficits in spatial learning and memory performance. MW exposure increased levels of plasma corticosterone, and consequently GC receptor (GR) nuclear translocation and apoptosis in the hippocampus. However, co-administration of the GR antagonist RU486 with MW exposure partially reversed the cognitive impairment and neuronal loss. These data indicate that GCs might contribute to the cognition deficit induced by chronic low-power-density MW exposure."
"In our study, GSM exposed rats had impaired memory for objects and their temporal order of presentation, compared to sham exposed controls (P = 0.02). Detecting the place in which an object was presented was not affected by GSM exposure. Our results suggest significantly reduced memory functions in rats after GSM microwave exposure (P = 0.02)."
"In line with our previous studies, we observed that the exposure to EMF had modest effects on brain oscillatory responses in the alpha frequency range ( approximately 8-12 Hz) and had no effects on the behavioural measures. The effects on the EEG were, however, varying, unsystematic and inconsistent with previous reports. We conclude that the effects of EMF on brain oscillatory responses may be subtle, variable and difficult to replicate for unknown reasons."
Neurobehavioral effects among inhabitants around mobile phone base stations
Abdel-Rassoul G et al, Neurotoxicology, marec 2007
"Inhabitants living nearby mobile phone base stations are at risk for developing neuropsychiatric problems and some changes in the performance of neurobehavioral functions either by facilitation or inhibition. So, revision of standard guidelines for public exposure to RER from mobile phone base station antennas and using of NBTB for regular assessment and early detection of biological effects among inhabitants around the stations are recommended."
Mobile phone affects cerebral blood flow in humans
Aalto S et al, J Cereb Blood Flow Metab, julij 2006
"Our results provide the first evidence, suggesting that the EMF emitted by a commercial mobile phone affects rCBF in humans. These results are consistent with the postulation that EMF induces changes in neuronal activity."
"The current findings suggest that EMF emitted by mobile phones has effects on brain oscillatory responses during cognitive processing in children."
Acute mobile phone effects on pre-attentive operation
Papageorgiou CC et al, Neurosci Lett, april 2006
"In contrast the exposure to MP-EMFs revealed statistically significant decrease of the amplitude of P50 evoked by the high frequency stimuli, at Fp1 electrode lead as compared to themselves without MP-EMF exposure. These findings provide evidence that the MP-EMF emitted by mobile phone affect pre-attentive information processing as it is reflected in P50 evoked potential. The basis of such an effect is unclear, although several possibilities exist and call for potential directions of future research."
"The problem of the influence of electromagnetic fields (EMF) of cellular phones (CP) on the health of children and teenagers is considered in this article. The results of the researchs indicate the increased sensitivity of the children and of the teenagers to this kind of radiation. Direct indicators of electromagnetic influence can be infringement of sleep, decrease of the memory, fatigue, breach of a blood-brain barrier permeability, changes in nervous cells of a brain. As the remote consequences the development of tumors of a brain and acoustic nerve are predicted. However all these results require the realization of independent repeated researches. WHO (World Health Organization) recommends to use "Precautionary principle" with the purposes of decreasing of the risk. Russian National Committee of Non-Ionizing Radiation Protection recommended to limit the use of CP by children and teenagers under 16 years old."
Dirty Electricity and Electrical Hypersensitivity: Five Case Studies
Havas M, Stetzer D, World Health Organization Workshop on Electrical Hypersensitivity, oktober 2004
"Deteriorating power quality is becoming increasingly common in developed countries. Poor power quality, also known as dirty electricity, refers primarily to a combination of harmonics and transients generated primarily by electronic devices and by non-linear loads. We have assumed, until recently, that this form of energy is not biologically active. However, when Graham/Stetzer™ filters were installed in homes and schools, symptoms associated with electrical hypersensitivity (such as chronic fatigue, depression, headaches, body aches and pains, ringing in the ears, dizziness, impaired sleep, memory loss, and confusion) were reduced."
"Decreases in concentration of receptors occurred in the frontal cortex and hippocampus of rats subjected to ten 20-min microwave exposure sessions, whereas increase in receptor concentration occurred in the hippocampus of animals exposed to ten 45-min sessions. This study also investigated the effects of microwave exposure on learning in the radial-arm maze. Rats were trained in the maze to obtain food reinforcements immediately after 20 or 45 min of microwave exposure."
The Microwave Syndrome - Further Aspects of a Spanish Study
Oberfeld G et al, Conference Proceedings, oktober 2004
"The adjusted (sex, age, distance) logistic regression model showed statistically significant positive exposure-response associations between the E-field and the following variables: fatigue, irritability, headaches, nausea, loss of appetite, sleeping disorder, depressive tendency, feeling of discomfort, difficulty in concentration, loss of memory, visual disorder, dizziness and cardiovascular problems. The inclusion of the distance, which might be a proxy for the sometimes raised "concerns explanation", did not alter the model substantially."
"Two new exposure parameters Specific Absorption per Day (SAD) and Specific Absorption per Call (SAC) have been devised and are obtained as combinations of SAR, calling time per day, and number of calls per day, respectively. The results indicates that SAR values >0.5 W/kg may be an important factor for the prevalence of some of the symptoms, especially in combination with long calling times per day."
"Comparisons of complaints frequencies (CHI-SQUARE test with Yates correction) in relation with distance from base station and sex, show significant (p < 0.05) increase as compared to people living > 300 m or not exposed to base station, till 300 m for tiredness, 200 m for headache, sleep disturbance, discomfort, etc. 100 m for irritability, depression, loss of memory, dizziness, libido decrease, etc. Women significantly more often than men (p < 0.05) complained of headache, nausea, loss of appetite, sleep disturbance, depression, discomfort and visual perturbations. This first study on symptoms experienced by people living in vicinity of base stations shows that, in view of radioprotection, minimal distance of people from cellular phone base stations should not be < 300 m."
Neuropsychological sequelae of 50 Hz magnetic fields
Keetley V et al, Int J Radiat Biol, junij 2001
"The other significant result occurred during performance of a trail-making task (alternating 1-A-2-B-3-C, etc.), with a decrease in performance as a result of exposure to the 50 Hz field. This task requires executive functioning with a working memory load, involving parietal spatial processing coordinated by prefrontal executive processing. In summary, the data are suggestive of detrimental effects on cognitive processes, particularly short-term learning and executive functioning. However, larger sample sizes are required to demonstrate statistically a more specific pattern of cognitive effects."
"The results suggest that the exposure to EMF modulates the responses of EEG oscillatory activity approximately 8 Hz specifically during cognitive processes."
"The RF field speeded up response times when the memory load was three items but no effects of RF were observed with lower loads. The results suggest that RF fields have a measurable effect on human cognitive performance and encourage further studies on the interactions of RF fields with brain function."
"Nonetheless, the presence of EMF altered the ERD/ERS responses in all studied frequency bands as a function of time and memory task (encoding vs retrieval). Our results suggest that the exposure to EMF does not alter the resting EEG per se but modifies the brain responses significantly during a memory task."
"The results suggest that exposure to the electromagnetic field emitted by cellular telephones may have a facilitatory effect on brain functioning, especially in tasks requiring attention and manipulation of information in working memory."
"Three groups of animals, microwave-exposed, sham-exposed, and cage control, were studied. Microwave-exposed rats were slower than sham-exposed and cage control rats in learning to locate the platform. However, there was no significant difference in swim speed among the three groups of animals, indicating that the difference in learning was not due to a change in motor functions or motivation. During the probe trial, microwave-exposed animals spent significantly less time in the quadrant that had contained the platform, and their swim patterns were different from those of the sham-exposed and cage control animals. The latter observation indicates that microwave-exposed rats used a different strategy in learning the location of the platform. These results show that acute exposure to pulsed microwaves caused a deficit in spatial "reference" memory in the rat."
"During the probe trial, magnetic field-exposed animals spent significantly less time in the quadrant that contained the platform, and their swim patterns were different from those of the controls. These results indicate that magnetic field exposure causes a deficit in spatial "reference" memory in the rat. Rats subjected to magnetic field exposure probably used a different behavioral strategy in learning the maze."
"Pretreatment with the cholinergic agonist physostigmine before magnetic field exposure reversed the field's effect on spatial learning. Data from this experiment indicate that magnetic field-induced spatial learning deficit is caused by the effect of the field on cholinergic systems."
"Performance on most memory and attention measures was unrelated to exposure, but significant linear dose-response relationships were found between exposure and some psychological and mental health variables. In particular, higher time-integrated exposure was associated with poorer coding-test performance and more adverse psychiatric symptomatology. These associations were found to be independent of participants' beliefs about effects of electromagnetic fields."
"Motor function, memory and attention significantly differed between the exposed and control groups. Children living in front of the RLS had less developed memory and attention, their reaction time was slower and their neuromuscular apparatus endurance was decreased."
"After 45 min of exposure to pulsed 2450 MHz microwaves (2 microseconds pulses, 500 pps, 1 mW/cm2, average whole body SAR 0.6 W/kg), rats showed retarded learning while performing in the radial-arm maze to obtain food rewards, indicating a deficit in spatial "working memory" function. This behavioral deficit was reversed by pretreatment before exposure with the cholinergic agonist physostigmine or the opiate antagonist naltrexone, whereas pretreatment with the peripheral opiate antagonist naloxone methiodide showed no reversal of effect. These data indicate that both cholinergic and endogenous opioid neurotransmitter systems in the brain are involved in the microwave-induced spatial memory deficit."
"The effects of nonionizing electromagnetic (EM) field interactions with the human body were reported and human related studies were collected. Nonionizing EM fields are linked to cancer in humans in three different ways: cause, means of detection, and effective treatment. Bad and benign effects are expected from nonionizing EM fields and much more knowledge is necessary to properly categorize and qualify EM field characteristics. It is concluded that knowledge of the boundary between categories, largely dependent on field intensity, is vital to proper future use of EM radiation for any purpose and the protection of the individual from hazard."
"The growing body of Russian and eastern European literature describing a wide variety of functional changes and clinical effects, leading to consideration of "radio-wave sickness" as a possible independent nosologic entity, cannot simply be ignored. With increasing uses and power, the stage is set for the appearance of late effects previously undetected possibly because of their infrequency, lack of distinctiveness or mild character. There may now be a better opportunity to resolve the uncertainties of present knowledge in the face of an increasing risk."

Podprite naš projekt

Projekt Ni nam vseeno je naše darilo vam. Ustvarjamo ga s srcem, v želji, da najdete koristne informacije, ki bi vam lahko pomagale, da (p)ostanete zdravi. Vsak doniran znesek bo porabljen za dober namen.
Doniraj

Zaupajte nam svojo zgodbo!

Vam elektrosmog povzroča težave? Ste prepoznali povezavo med sevanji in vašimi motnjami spanca, glavoboli, utrujenostjo? Pišite nam o svojih izkušnjah na info@ninamvseeno.org!

Vsa vsebina na spletni strani (razen slik) je pod licenco Creative Commons (CC BY 4.0). Prosto kopirajte, prilagajajte in razširjajte naprej.